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Abstract. Calculations are presented to assess a theorem
presented by S.F. Boys [(1969) Proc. R. Soc. A. 309:195],
regarding the accuracy of numerical integration in
quantum chemical calculations. The theorem states that
the error due to numerical integration can be made
proportional to the error due to basis set truncation, and
thus goes to zero in the limit of a complete basis. We test
this theorem on the hydrogen atom, showing that with a
solution-spanning basis, the numerically exact orbital
energy can indeed be calculated with a small number of
integration points. Moreover, tests for H and H,"
demonstrate that even when only a near-complete basis
is employed, Boys’ Theorem can significantly reduce
integration error. However, for other systems, like the
oxygen atom and the CO, molecule, the theorem yields
no advantage for some occupied orbitals. It is concluded
that the theorem would be most useful for calculations
that demand large basis sets.

Keywords: Numerical integration — Boys” Theorem —
Numerical error

1 Introduction

Many quantum chemical software packages utilize
analytical integration schemes, which have the advan-
tage that integrals can be quickly and accurately evalu-
ated. However, such schemes are limited somewhat in
their choice of basis sets, because analytical solutions do
not always exist, or are difficult to calculate. Often
Gaussian or plane-wave basis sets are utilized, because
integral evaluation is simple, but they are not optimal
for representing molecular wavefunctions.
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Sometimes numerical integration schemes are used,
particularly for density functional theory (DFT),
where some form of numerical integration is
unavoidable. Numerical integration allows for a more
general choice of basis set, but at the cost of inte-
gration accuracy. Such programs tend to make use of
basis functions better optimized for molecular systems,
such as Slater-type orbitals (STOs), which allow
smaller bases to be used [1]. However, numerical
integration introduces an additional form of error,
that due to the integration scheme itself. Under-
standing the balance between basis set truncation error
and numerical integration error is important in such
cases: expending computation time on reducing one
type of error may be pointless if the other is not
reduced proportionally.

Interestingly, these two types of error are not inde-
pendent of one another. A study by Boys [2] as long ago
as 1969 showed that in fact the numerical integration
error tends to zero as the basis set is improved, inde-
pendent of how many integration points are used. For a
complete basis, the numerical integration error is zero.
This may seem surprising at first, but is actually quite
reasonable: in the limit of a complete basis, exact orbital
solutions are attainable, and evaluation of an exact
orbital at a single point is sufficient to yield its energy
exactly. It could thus have been anticipated that for a
complete basis, any numerical integration scheme, no
matter how poor, would yield the orbital energies
exactly.

Boys’ finding is elegant and insightful, but is it of any
practical benefit? How close to completeness does a basis
set need to be in order for a calculation to benefit from
this theorem? Can a reduction in numerical grid size be
achieved with the basis sets typically used in calcula-
tions? If not, is there at least a niche of chemically rel-
evant systems where large basis sets are a requirement,
and where a significant reduction in integration points
could thus be realized? These questions form the basis of
this study.



Here we adapt the density-functional code Amster-
dam density functional (ADF ) [1] such that it satisfies
the requirements necessary for Boys’ Theorem to take
effect. We then demonstrate the validity of the theorem
by performing calculations on a hydrogen atom where
the basis set utilized completely spans the solution space.
This is equivalent to introducing a complete basis set,
and Boys’ Theorem thus predicts that the energy will be
calculated exactly, regardless of the numerical grid used.

Further calculations are performed for the H atom
with an incomplete basis, along with O, H, ", and CO..
For these systems, the emphasis is not on achieving the
exact solution, but instead on how the results from
calculations utilizing Boys’ approach compare with
those in the standard implementation of ADF. The
question of whether significant reductions in grid size
could be achieved in typical calculations by making a
quantum chemistry code “Boys-conforming” is also
considered.

In Sect. 2 we summarize Boys’ findings, and discuss
the changes necessary to make ADF conform to his
theorem. In Sect. 3 results are presented for H, O, H, ",
and CO,, and discussed. Section 4 concludes.

2 Method
2.1 Boys’ Theorem

Here we briefly summarize Boys’ theorem 3 [2], which
pertains to numerical integration. The theorem can be
restated as follows: Approximate solutions to the
eigenvalue equation

(f = Ep)[y;) =0 (1)
can be obtained by solving the secular equations

> (dulH — E|¢)ci; =0 (2)
for the approximate eigenvectors ‘w}> =) cijl¢;), and

approximate eigenvalues E’;, where the |¢,) form an
incomplete set of basis functions. Equation (2) can be

further approximated by evaluating the integrals
numerically:

> (o0 - E2)19)cd =0 (3)
giving approximate eigenvectors ’¢Q> Zc |);), and

approximate eigenvalues EQ. (The label Q1 is used here to
denote ‘numerically evaluated’.) The operator Q is of the
form

0=> 8(r—rw (4)
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where the r; are integration points, and the wy are the
corresponding weights.
Boy’s showed, using perturbation theory, that the

leading term in the error of the energy (EJQ) ,ej,1s given by

=B () = £ (4 +4), ®
where
= Ej + €j. (6)

(Note that where Boys’ treatment was quite general,
we are only treating the case where H is Hermrtlan and
left and right eigenvectors are thus identical.) u is the
largest fractional error due to numerical integration that
occurs in any of the 1ntegrals of Eq. (3), and Ell is a
perturbation coefficient. p; is the least- squares error
obtained by fitting the exact solution, if;, with the basis
functions {¢;}. That is

w= v, =, (7)

with

lzj = chkd)k? (8)
%

the best least-squares approximation to ;.

What Eq. (5) demonstrates is that as the error due to
basis set truncation, e = ,u ,,» goes to zero, so too does
the total error in the energy, regardless of the magnitude
of the error due to the numerical integration scheme.
The error 1ntroduced by numerical integration is

Q = ,u] 1> not ,u as you might expect. The accuracy of
a program utlhzrng a numerical integration scheme can
thus be increased by utilizing a basis set that can accu-
rately represent the solution (i.e., that reduces the error

)-

! It should be stressed that Boys’ theorem applies only
to the orbital energies derived from the secular equa-
tions, and not to any expression for the total energy, or
indeed any other numerical integration (e.g., normali-
zation, moments of the density). Any practical applica-
tion of Boys’ theorem would require a second
integration grid in order to accurately evaluate such
quantities.

It is also important to emphasize that the theorem
is only valid if all of the integrals that arise in Eq. (3)
are evaluated using the same numerical integration
scheme. If this is not the case, the error arrsmg from
using numerical integration is K not ,u K and any
advantage is negated [2]. Most of the software utilizing
numerical integration will not comply with this
requirement, and would need to be modified to garner
any advantage from Boys’ theorem. ADF is no
exception in this regard, and the modifications that
were required are described in the next section.
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2.2 Adjustments made to ADF

Several adjustments were needed to ADF in order to
make it conform to the requirements of Boys’ theorem.
Because the kinetic energy matrix should be symmetric,
but is not owing to the numerical integration used to
calculate its elements, ADF averages corresponding
elements, forming a symmetric matrix. This averaging
breaks the requirements of Boys’ theorem.

In the Boys-conforming version of ADF—to be
known here as ADF-B—this averaging of kinetic energy
matrix elements does not occur. Instead, the full non-
symmetric matrix is used in the calculation. This means,
of course, that the Fock matrix is no longer symmetric,
and cannot be diagonalized with a standard algorithm
for real-symmetric matrices. A diagonalization routine
for general real matrices was introduced for this pur-
pose.

A real nonsymmetric matrix can potentially have
complex eigenvalues, occurring in complex-conjugate
pairs. Because the Fock matrix calculated by ADF-B is
almost symmetric, the eigenvalues remained real
throughout our calculations, and the problem of han-
dling complex eigenvalues was avoided. However, any
practical application of the method would undoubtedly
have to address the issue of when complex eigenvalues of
the Fock matrix could arise, and how they should be
treated in the event.

In setting up the generalized-eigenvalue problem to be
solved, ADF uses an analytically-calculated basis set
overlap matrix. In order to conform to Boys’ theorem, all
integrals must be performed numerically, including the
overlap matrix integrals. The ADF code was thus modi-
fied so that the overlap matrix was calculated utilizing
numerical integration of the basis function products. This
matrix was used, along with the non-symmetric Fock
matrix discussed earlier, to calculate the orbital energies.

2.3 Tests on the hydrogen atom with a solution-spanning
basis

To test the validity and practicality of Boys’ theorem,
several systems were considered. The hydrogen atom
provides a good initial testing ground for Boys’ theorem,
because it is the only system for which a simple basis can
be generated that completely spans the solution space.
This system not only acts as a test of Boys’ theorem, but
also of the changes made in ADF in order to meet the
requirements set by the theorem.

Because the exchange—correlation and electron—
electron coulomb potentials do not cancel exactly in
DFT calculations on hydrogen, as they should, each was
excluded from the calculations. We are thus dealing with
the solution in the simple —1/r coulomb potential. The
solutions are known analytically, and can be spanned
completely by sets of STO basis functions.

2.4 Tests on hydrogen with non-spanning bases

Having tested whether Boys’ theorem leads to numeri-
cally-exact results when a solution-spanning basis is
used, we carried further tests out to ascertain whether
results for non-spanning basis sets also benefit from the
theorem, and how complete a set need be before that
benefit is realized. The hydrogen atom was again
adopted, because the exact orbitals are known analyti-
cally, which means the basis set error can be quantita-
tively established.

Calculations were performed on hydrogen, with a
basis set consisting of a single STO function, with radial
dependence proportional to
exp (—{r). )

The function’s exponent, {, was varied systematically,
to gauge the relationship between basis completeness,
and numerical error in the energy of the ls orbital. The
least-squares error in the approximation of an orbital is
given by

u=lly ¥ =v2=s.

where S = <tp|lﬁ>, with  the exact orbital, and lz the

best normalized least-squares fit to the exact solution for
the basis set given. For an orthonormal basis set,

(10)

~> S le W | ¢0)
) —
AR DE

i

(11)

For the 1s state the basis set error was easily evalu-
ated with only a single basis function, because evaluating
Egs. (10) and (11) amounts to little more than deter-
mining the overlap between the basis function and the
exact solution, i.e., between two STOs.

To ensure that results obtained for hydrogen with a
single basis function were not uncharacteristic of more
general cases, tests were performed as described earlier,
but with two STO basis functions, instead of one. When
using multiple STO basis functions, {y;}, the {¢;} in
Eq. (11) should represent an orthogonalized set such as
that generated by the symmetrical orthonormalization
d) _ XS_1/2.

2.5 Tests on the oxygen atom

Given the simplicity of hydrogen, it was decided that
calculations should also be performed for a multi-elec-
tron atom with a more general central potential. The
oxygen atom was chosen for this purpose.

Because the exact solutions for oxygen are not known
analytically, calculating the least-squares error for a
given basis set presented more of a problem than for



hydrogen. A utility called ‘DIRAC’, which can be found
in the ADF package [1], was used to calculate numerical,
one-dimensional orbitals on a logarithmic radial grid.
The basis truncation error, u, was calculated as for the
hydrogen atom with multiple basis functions (see
Sect. 2.4), except that the overlaps between the basis
functions and the ‘exact’ solutions, y/, were determined
by performing numerical integrals on the radial grid
generated by DIRAC.

To allow for more direct comparison between calcu-
lations with different basis sets and integration grids, all
calculations for the oxygen atom made use of a fixed
potential, eliminating the need for a self-consistent-field
cycle. The potential used in each case was the one gener-
ated by DIRAC, corresponding to the numerical orbitals
calculated. This potential was read into ADF, and inter-
polated onto the ADF integration grid, in calculating the
Fock matrix. The calculations in ADF and DIRAC were
performed for the X functional, with an o value of 0.7.

2.6 Tests on the Hy™ molecule

It is more difficult to approach a solution-spanning basis
set for noncentral potentials, such as those found in
molecules, than for the single-center potentials of atoms.
The atom-centered basis sets used in calculations on
molecules are less capable of describing solutions in the
bonding region than they are in the immediate vicinity of
an atom.

The simplest molecule conceivable was chosen to test
Boys’ theorem for multi-center potentials: H, . Being a
one electron system, the exchange—correlation and elec-
tron—electron Coulomb potentials were removed from
the calculations, as described previously for the hydro-
gen atom. Spin-unrestricted calculations were per-
formed, with a bond length of 2.0 bohr.

Since analytical exact solutions of the H," wave-
function are not available, the size of each basis set—in
terms of the number of functions—was used as a rough
measure of basis set error. Standard ADF basis sets
were used for the calculations, in addition to larger
basis sets that included bond-centered STOs. For the
latter, diffuse functions were included at the bond
center, because they are known to complement the
atom-centered functions [3].
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2.7 Tests on the CO, molecule

CO, was chosen to test Boys’ theorem on a multi-elec-
tron molecule. No effort was made to develop solution-
spanning bases; instead, standard basis sets taken from
the ADF package were utilized. Calculations were per-
formed with the Becke—Perdew generalized gradient
approximation functional [4]. A fixed potential was used
for each basis set. This potential was calculated for a
given basis set by performing a standard ADF run with
high integration accuracy, corresponding to an integra-
tion accuracy parameter (accint) of 12. The CO bond
lengths were each set to 2.2120 bohr.

3 Results and discussion
3.1 Hydrogen atom with solution-spanning basis

Calculations were performed for the hydrogen atom
with a basis set consisting of three STOs: two 1s func-
tions, with exponents ({) of —1 and —0.5 (in atomic units),
and one 2s function, with exponent —0.5. This basis
spans the solution space for the 1s and 2s atomic orbitals
of hydrogen.

With the exchange—correlation and electron—electron
Coulomb potential terms removed, ADF-B could be
made to calculate the 1s and 2s orbital energies to within
machine precision (Table 1), for integration grids rang-
ing in size from 5 to 30 points. As would be expected,
the accuracy of the standard version of ADF increased
with the number of integration points, but did not reach
the numerically-exact energy for any of the grids tested.
These results fully confirm Boys’ theoretical findings.

3.2 Hydrogen atom with nonspanning bases

Results for a single basis function with varying exponent
are shown in Figs. 1 and 2. Figure 1 shows the error in
the 1s orbital energy calculated by ADF, relative to that
calculated by ADF-B, as a function of basis complete-
ness, and for different integration grids. The relative
error is simply the absolute value of the ADF error di-
vided by the absolute value of the ADF-B error. For
values of the error greater than 1.0, ADF-B is more

Table 1. Orbital energies calculated for the hydrogen atom, with exchange—correlation and electron—electron Coulomb potentials ex-
cluded. Results are given for the standard implementation of Amsterdam density functional (ADF), and the implementation conforming
to Boys’ theorem (ADF-B). The basis set used completely spanned the solution space of the 1s and 2s atomic orbitals of hydrogen. ‘accint’
refers to a parameter, stipulated in the input to ADF, that controls the density of the numerical integration grid used. Energies are given in

atomic units

accint Number of integration points Atomic orbital ADF energy ADF-B energy Exact energy
0.001 5 Ls —0.46560953370147 —0.50000000000000 -0.5
2s —0.11710059227062 —0.12500000000000 -0.125
4 19 Ls —0.50000020326244 —0.50000000000000 -0.5
2s —0.12473182102444 —0.12500000000000 -0.125
8 30 Ls —0.49999999999864 —0.50000000000000 -0.5
2s —0.12498386637249 —0.12500000000000 —-0.125
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Fig. 1. Error in the 1s orbital energy for hydrogen of Amsterdam
density functional (ADF) relative to the Boys-conforming ADF
(ADF-B) versus the negative logarithm (base 10) of the least-
squares basis set error (u). The results are for a single Slater-type
orbital (STO) basis function. Plots are shown for integration grids
of various sizes, with the number of integration points used in each
grid indicated in the legend. The ratio of errors is shown on a
logarithmic scale. Values greater than 1.0 occur when the ADF
error is larger than that of ADF-B, and values less than 1.0 when
the ADF error is smaller
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Fig. 2. Logarithm (base 10) of the absolute error in the 1s orbital
energy of hydrogen versus the number of integration points used.
The basis sets consisted of a single 1s STO basis function. Each plot
is for a particular basis function exponent, {, and methodology
(i.e., ADF or ADF-B). The methodology used is indicated, with the
exponent given in parentheses in atomic units

accurate, and for values less than 1.0, ADF is more
accurate.

The plots in Fig. 1 show an almost linear trend.
(Though this is generally true, there are aberrations,
since the error is not required to vary systematically with
the completeness metric.) This upward trend is in
agreement with the expectation that as the least-squares
basis set error (i) goes to zero [i.e., —log(u) increases],
ADF-B should approach the exact orbital energy. The
plots run approximately parallel, and are shifted upward
by increasing the number of integration points, indi-

cating that ADF-B is relatively more accurate than ADF
for larger integration grids. It is not clear why this
should be the case.

Even with u as high as 107, ADF-B has a significant
advantage over ADF, leading to an improvement of
roughly a factor of 10. The relative improvement in-
creases from there in logarithmic proportion to p. With
uat 1073, the ratio of errors is 10°, and with uat 107, it
is around 10°.

To put these results into perspective, a value of 10!
for u, leading to an order of magnitude reduction in the
error of ADF-B over ADF, requires the overlap between
basis set and exact solution—as defined by S in
Eq. (10)—to be 0.995. For u of 10, leading to a 1,000-
fold improvement, an overlap of 0.9999995 is required.
These results would seem to imply that where a basis
could be devised to achieve such overlaps, significant
gains in accuracy could be achieved by invoking Boys’
Theorem.

Figure 2 shows plots of the absolute error in the s
energy as a function of integration grid size. Each plot is
for a particular combination of methodology and basis
function exponent. The results for ADF are relatively
independent of exponent, with the two ADF curves lying
practically on top of one another. For the exponents
shown, ADF-B is considerably more accurate than ADF
over all grid sizes. The accuracy of ADF-B increases as
the basis set error approaches zero: the results for ADF-
B with an exponent of 0.9999 lie below those with an
exponent of 0.99.

An exponent of 0.99 corresponds to a value of
0.9999621224 for the basis—solution overlap, S, and
0.0087 for p. An exponent of 0.9999 gives 0.000087 and
0.9999999962, respectively.

At this point we may ask the question: How many
integration points are needed for ADF-B to achieve the
accuracy generally accepted for calculations performed
with ADF? The default value for accint, the integration
parameter in ADF, is 4 for a single point calculation like
this. With accint equal to 4, the integration grid has
between 17 and 19 points in these particular calcula-
tions. If we trace a horizontal line from the value of the
ADF curves in Fig. 2 corresponding to 19 integration
points, back to the curves for ADF-B, we obtain an
approximate answer to our question.

With exponent 0.99, ADF-B achieves the same error
as ADF at 19 points with around 10-12 points. With an
exponent of 0.9999, only approximately five points are
needed. So, in this example, it is possible to make sav-
ings of 2—4 in the number of integration points required
to achieve a satisfactory error, by using a Boys-con-
forming methodology.

Results analogous to those in Fig. 2, but for basis
sets with two STO functions, are shown in Fig. 3. The
exponents of the basis functions in each basis set were
chosen to be symmetrical about 1.0, the exponent of
the exact solution for the ls orbital. The basis sets
used had exponents of 0.5 and 1.5, corresponding to a
basis truncation of px=0.161915; 0.9 and 1.1, giving



1=0.006139; and 0.975 and 1.025, giving = 0.000383.
Results are shown for ADF and ADF-B, but only one
plot is given for ADF, because the results for ADF
are insensitive to the basis set used, as was seen in
Fig. 2.

The findings for single-function basis sets carry over
quite well to the two-function bases. Absolute errors for
ADF-B are considerably smaller than those of ADF for
all but the poorest basis shown. Errors for ADF-B tend
to decrease (i.e., plots move downward) as p goes to
zero. This is true at most integration grid sizes, but not
all.

We again wish to determine the integration grid size
required for ADF-B to give the same error as ADF with
19 integration points, corresponding to an accint
parameter value of 4. From Fig. 3, we estimate around
12 points would be needed for the most complete basis
shown. This is a significant reduction, but less than was
seen in Fig. 2. However, the basis truncation is larger for
the most complete basis in Fig. 3 (x=0.000383) than it
was in Fig. 2 (©¢=0.000087), which could partially ex-
plain the discrepancy.

Figures 1, 2, and 3 indicate that utilizing bases that
are almost solution-spanning leads to dramatically
reduced error in orbital energies when using a Boys-
conforming methodology, for single- and multiple-
function basis sets. Whether such bases are practically
attainable in more complex systems occupies much of
our attention for the rest of this study.

3.3 Oxygen atom

Figure 4 shows the dependence of the absolute energy
error on the number of integration points for oxygen.

Log of Error
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Fig. 3. Logarithm (base 10) of the absolute error in the ls orbital
energy of hydrogen versus the number of integration points used,
for two-function basis sets. The basis sets used consisted of 1s STO
basis functions. Each plot is for a particular pair of basis function
exponents, {, and methodology (i.e., ADF or ADF-B). The
methodology used is indicated, with the exponents given in
parentheses in atomic units
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Because the exact orbital energies are not known, the error

is taken with respect to an ADF calculation with a very
high integration accuracy. The integration parameter,

1s Orbital

—e— ADF, DZ

—=— ADF, QZ4P
--+---ADF-B, DZ

- .- ADF-B, QZ4P
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Log of Error
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Fig. 4. Dependence of the logarithm of the absolute integration
error in the orbital energy on the number of integration points, for
oxygen. Separate panels are shown for each of the orbitals of
oxygen. Each panel gives results calculated using ADF and ADF-
B, for two different basis sets: double-zeta (DZ) and quadruple-zeta
with four polarization functions (QZ4P). These basis sets are
described in the text. The error itself is also defined in the text
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accint, was set to 12 for this purpose, which corresponds
approximately to the limit of machine precision.

Separate plots for each orbital are shown, for ADF
and ADF-B with two different standard ADF basis sets.
The double zeta (DZ) basis included the following STOs,
with the exponent given in parentheses: ls (9.80), ls
(6.80), 2s (1.70), 2s (2.82), 2p (3.06), 2p (1.30). The
quadruple-zeta with four polarization functions (QZ4P)
basis included 1s (14.800), 1s (8.750), 1s (7.100), 1s
(6.650), 25 (3.200), 2s (2.050), 2s (1.500), 25 (0.750), 2p
(5.700), 2p (3.050), 2p (1.650), 2p (1.000). STOs not
contributing to the occupied orbitals, such as d and f
STOs, are not given here. The basis error metrics, S and
u, corresponding to these bases, are given on a per
orbital basis in Table 2.

The results in Fig. 4 are not nearly as impressive as
they were for hydrogen. The results for the 1s orbital are
good, with the error for ADF-B 1-2 orders of magni-
tude less than for ADF with small integration grids.
Remarkably, this improvement with small integration
grids is obtained for both the small DZ basis and the
large QZAP basis. To achieve approximately the same
accuracy as ADF with around 30 integration points
(accint approximately equal to 4), ADF-B only requires
around half as many points.

The results for ADF-B deteriorate moving to higher
orbitals, such that for 2p there is virtually no advantage
in using ADF-B over ADF. ADF-B does show some
improvement over ADF for the 2s orbital, but only
with very few integration points. There is certainly no
gain to be had for either of these orbitals when using
the standard integration grids commonly adopted for
ADF calculations (approximately 30 integration
points).

The least-squares basis set errors in Table 2 increase
going from s to 2p, as would be anticipated. However,
in light of the magnitude of these errors, the results are
somewhat disappointing when compared with those for
the hydrogen atom. The values in Table 2 demonstrate
that the basis set error for ls is in the range
[-logu=3.2(DZ)-3.6(QZ4P)], which for hydrogen was
sufficient to reduce the integration error by factors in the
range 100-5,000. Reductions in the integration error for
O 1s are on the order of 100, for a small grid (in the
range 5-15 points). The basis set error for 2p is larger
[-logu=1.6(DZ)-2.9(QZ4P)], but reductions by factors
of 10-100 would still be expected on the basis of the
hydrogen results. The results in Fig. 4 do not bear this
out. Clearly the basis set error alone is not adequate for
establishing if a significant improvement in integration
accuracy can be achieved through Boys’ theorem.

3.4 H>" molecule

Orbital energy errors for calculations on H, " are pre-
sented in Fig. 5. Results are given for different basis sets,
and integration grid parameters (i.e., accint). Two of the
basis sets shown, single zeta (SZ) and QZ4P, are stan-

Table 2. Basis set error metrics for the ADF basis sets used in
calculations on the oxygen atom. The basis sets and metrics are
defined in the text. Values are given for each of the occupied
orbitals of oxygen: ls, 2s, and 2p. The values were obtained uti-
lizing numerical orbitals taken from calculations with the utility
DIRAC

Basis set Metric s 2s 2p
Dz S 0.99999977 0.99999779 0.99972973
u 0.00067212 0.00210164 0.02324944
QZ4P S 0.99999997 0.99999996 0.99999933
u 0.00025229 0.00029381 0.00115951
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Fig. 5. Absolute error in orbital energies due to numerical
integration, for calculations on H," with various basis sets and
integration grids. The error in the energy is taken relative to a
calculation with the integration accuracy parameter (accint) set to
12. The basis sets are described in the text. The top panel is for
calculations with ADF, and the bottom panel for calculations
performed with ADF-B. For each basis set, bars are presented that
correspond to different values of accint. Values of 0.5, 2.0, and 4.0
were used

dard ADF basis sets. For a hydrogen atom, SZ includes
a single 1s STO with exponent 1.24. The QZ4P basis set
includes the following STOs: 1s (3.300), 1s (2.000), Ls
(1.400), 1s ( 1.000), 15 (0.710), 2p (2.000), 2p (1.000), 3d
(2.500), 3d (1.500).

The last basis set shown in Fig. 5 is labeled ‘BC’, for
bond-centered. This is a very large basis set, with func-
tions centered not only on the atoms, but also at the
center of the bond. The STOs assigned to each atom
were ls (5.000), 1s (3.300), 1s (2.000), 1s (1.500), 1s



(1.000), 2p (5.000), 2p (3.000), 2p (2.000), 3d (7.500), 3d
(4.500), 3d (3.000), 4/ (10.000), 4/ (6.000), and 4/ (4.000).
At the bond center, the following STOs were included in
the BC basis: 15 (5.000), 15 (3.300), 15 (2.000), 1s (1.400),
1s (1.000), 1s (0.710), 25 (0.750), 25 (0.500), 35 (0.500), 4s
(0.500), 3d (4.000), 3d (2.000), 3d (1.400), 3d (1.000), 3d
(0.500), 4d (0.500).

The results in Fig. 5 show that the error due to
numerical integration is significantly smaller for ADF-B
than for ADF. This holds for each of the three basis sets,
and for the three grids used (accint =4 is the default grid;
accint=2.0 and 0.5 are small and very small grids,
respectively). As expected, the improvement is larger for
larger bases: the ADF error actually increases slightly
with basis set size, whereas the ADF-B error decreases.
The distinction becomes striking for the largest basis,
BC, where ADF-B achieves a numerical precision of
around 10 on a very small grid (accint=0.5). This is
comparable to the precision achieved with the default
grid (accint=4) in ADF. ADF-B also significantly
improves upon ADF for the larger accint=2.0 and
accint=4.0 grids.

For any given basis set, the error for ADF-B
decreases as the basis size is increased with accint equal
to 0.5 and 2.0. For accint =4.0, the ADF-B results show
little dependence on basis set, probably because the
calculations are very accurate for all of the basis sets,
leaving little room for improvement over this particular
range of basis sets.

These results demonstrate that benefits could be
realized through Boys’ theorem for molecular systems.
ADF-B yields improved numerical precision in all cases,
but is truly impressive in calculations with very large
basis sets, larger than those typically in use today. Cal-
culations that, for whatever reason, demand a very large
basis, would require large integration grids to match the
precision afforded by the basis set. Such calculations
could profit from implementing Boys’ theorem, allowing
smaller integration grids to be used.

3.5 CO;5 molecule

The results for the CO, molecule are given in Fig. 6.
They show the root-mean squared error in the orbital
energies for various ranges of orbitals, as a function of
integration grid size. The basis set QZ4P is the largest
available set for routine calculations.

There is a striking difference between the lowest
orbitals (see curves for orbitals 1-3, the 1s orbitals on C
and O) and the valence orbitals (see curves for orbitals
7-9 as a representative set). Beyond a grid size of 125
points there are only minor differences between ADF
and ADF-B (350 points corresponds approximately to
accint=4, the ADF default for a single point calcula-
tion). Both ADF and ADF-B are more accurate for the
lowest orbitals (i.e., 1-3) than for the highest occupied
orbitals (i.e., 7-9). Results for ADF-B are really only
distinguishable from those for ADF on the smallest
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Fig. 6. Root-mean-squared (RMS) errors in the occupied orbital
energies of CO,. All results are for the QZ4P atomic basis sets of C
and O. Results are given for ADF and ADF-B, as a function of the
number of integration points used. The RMS errors used are for
different ranges of orbitals, ordered according to energy. The
results are shown for RMS errors taken over the lowest three
orbitals (i.e., 1-3) only, and taken over the highest three occupied
orbitals (i.e., 7-9) only

integration grids shown. Where ADF errors tend to
blow up as the integration grid shrinks below 125 inte-
gration points, the ADF-B errors continue to follow the
trend set for larger grids, with error increasing more
gradually.

For the lowest occupied orbitals, ADF-B maintains
an acceptable level of error right down to the smallest
grids tested. For calculations where only the lowest-lying
orbitals are of importance, Boys’ theorem offers clear
advantages in terms of the grid size reduction.

For higher-lying occupied orbitals, the advantage is
also more than an order of magnitude for certain grid
sizes; however, for the high-energy orbitals it is not true
that errors for small integration grids are comparable in
magnitude to those for larger grids. Results for 50 inte-
gration points, for example, are at least two orders of
magnitude worse than those for 350 points. Even though
ADF-B outperforms ADF for these orbitals, it is still
unable to compete with larger grid sizes. These results
indicate, in line with what we found for the oxygen atom,
that the QZ4P basis is still too far from completeness for
the higher orbitals to fully benefit from Boys’ theorem.

4 Conclusion

In the sense that Boys’ theorem has been ‘experimen-
tally’ confirmed, this study has succeeded. The theorem
states that the error in orbital energy that arises out of
utilizing a numerical integration scheme is proportional
to the least-squares error of the best fit of the basis set to
the orbital in question. In the limit of a solution-span-
ning basis set, orbital energies will be exact, regardless of
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the numerical integration grid used. We have been able
to show that for a hydrogen atom at least this is so.

However, our objectives were broader than simply
affirming the truth of Boys’ finding in the limiting case.
We were equally interested in the behavior of the energy
errors in the approach to that limit. Most of this study
has concentrated on how the integration error varies as
the basis set is expanded.

Tests on the hydrogen atom revealed that the error in
orbital energy decreased for a Boys-conforming version
of ADF as the least-squares basis set error decreased.
This was true whether a single basis function was used,
or multiple functions.

The Results for the oxygen atom demonstrated that
the benefit from Boys’ theorem is only substantial for
larger basis sets than even the largest ones commonly
used today. For the lowest orbital, O 1s, where the basis
error is relatively small, results for the Boys-conforming
code were significantly better on small integration grids,
but little improvement was seen for the high-energy
occupied orbitals, where the basis set error was larger.

Calculations for polynuclear potentials (H,* and
CO,) showed a similar trend: Boys’ theorem was effec-
tive in reducing the error of the occupied orbital of H, "
and the lowest lying orbitals (1s-based) of CO,, such
that a significant reduction in grid size could be realized
without large reductions in accuracy. For high-energy
occupied orbitals in CO,, and a QZ4P basis, while Boys’
theorem did contribute to improved accuracy on small

integration grids, the reduction was not nearly enough
to bring errors in line with those for integration grids
typically used in calculations.

In conclusion, it is quite difficult to enter the regime
of near-complete basis sets where significant benefit can
be derived from Boys’ theorem. In this study, we have
been able to do this for the occupied orbital of H, " and
the lowest-lying orbitals of CO,, but for high-energy
occupied orbitals we would have to go considerably
beyond even the best basis sets (e.g., QZ4P) commonly
in use today. In practice, this means the applicability of
Boys’ theorem is to a select subset of problems, where
very large basis sets are a requirement. Larger basis sets
place increasingly higher demands on the numerical
integration grid; application of Boys’ theorem would act
to negate this effect, significantly reducing the numerical
grid, and making such calculations more tractable.
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